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We introduce a spatial coordinate transformation technique to compress the excessive
white space (i.e. free-space) in the computational domain of finite methods. This approach
is based on the form-invariance property of Maxwell’s equations under coordinate trans-
formations. Clearly, Maxwell’s equations are still satisfied inside the transformed space,
but the medium turns into an anisotropic medium whose constitutive parameters are
determined by the coordinate transformation. The proposed technique can be employed
to reduce the number of unknowns especially in high-frequency applications wherein a
finite method requires an electrically-large computational domain. After developing the
analytical background of this technique, we report some numerical results for finite ele-
ment simulations of electromagnetic scattering problems.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Form-invariance property of Maxwell’s equations under any coordinate transformation has led to numerous interesting
and useful applications, which control the propagation of electromagnetic fields in a desired manner. Inside the transform
space, Maxwell’s equations are still satisfied, but the medium turns into an anisotropic medium, whose constitutive param-
eters are determined by the coordinate transformation, to reflect the effect of the coordinate transformation on the electro-
magnetic fields. One of the most well-known applications utilizing the coordinate transformation technique is the design of
perfectly matched layers (PMLs), which are used as artificial absorbers in mesh truncation of the finite methods [1,2]. An-
other application, which is quite familiar to the physics community, is the design of a cloaking device for obtaining electro-
magnetic invisibility [3]. Recently, various anisotropic metamaterial (AMM) design techniques that are based on the concept
of coordinate transformation have been proposed, some of which are listed in [4–14].

In this paper, we define a special coordinate transformation technique to compress the excessive white space, which is
inevitable in some boundary value problems, in such a way that electromagnetic waves are bended and guided inside the
AMM layer(s) without altering the wave behavior in the remaining part of the domain. To visualize a possible wave behavior
inside the AMM layer (see Fig. 1), we may employ the ray-optics interpretation in high frequencies and show the confine-
ment of the wave into the layer, which is designed above a thin perfect electric conductor (PEC) strip, assuming that the do-
main is compressed vertically. This figure is just an illustration to better grasp the action of an AMM layer, and the actual
wave behavior may vary depending on how the compression operation is performed. It is worth to emphasize that the
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Fig. 1. Illustration of wave behavior inside the AMM layer: (a) original wave behavior and (b) guided and bended wave behavior after domain compression.
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proposed method is applicable over the entire spectrum, not only in the high-frequency regime, because the derivations in
this method follow exactly from Maxwell’s equations.

The domain compression technique can be used to achieve efficient and accurate numerical simulations of electromag-
netic boundary value problems by finite methods in the solution of a certain class of problems, especially having an electri-
cally-large non-convex object or multiple objects positioned arbitrarily in space. In such problems, the computational
domain requires the employment of excessive white-space (i.e. free-space), which introduces a large number of unknowns.
This is due to the fact that the computational domain must necessarily be convex in order to properly take into account of the
wave interactions (or mutual couplings) between different portions of the object(s). For instance, while solving the two-
dimensional (2D) scattering problem containing an arbitrary non-convex object, the computational domain should be rect-
angular as shown in Fig. 2(a) (this is a commonly-used approach in literature for methods employing a Cartesian mesh/grid),
or at least must be designed by considering the convex hull [i.e., the smallest convex set that encloses the object(s)] as shown
in Fig. 2(b). The rays in Fig. 2(a) illustrate possible paths of wave interactions (reflected or diffracted waves), when the prin-
ciples of ray optics are employed assuming that the object is electrically-large. It is evident that, in both cases in Fig. 2, the
computational domain must include the excessive free-space covering the inner part of the convex hull of the object. An-
other reason of why the computational domain must be convex is that the PML (or any absorbing boundary condition),
which truncates the computational domain, must be designed over a convex domain in order to annihilate outgoing waves
arriving at the PML–free-space interface. Thus, the convexity property of the computational domain is mandatory in finite
methods and introduces a large number of unknowns wasted in free-space in some challenging geometries. The proposed
technique compresses excessive white space using AMM layer(s), as illustrated in Fig. 3, and thus, eliminates the unknowns
in this white space and yields a reduction in the number of unknowns.

This paper is organized as follows: in Section 2, we introduce the fundamentals of the domain compression technique. In
Section 3, we discuss some issues related to the implementation of the method. In Section 4, we present finite element sim-
ulations of a number of representative electromagnetic scattering problems. Finally, we present our conclusions in Section 5.

2. Domain compression by coordinate transformation

Without loss of generality, we illustrate the technique by considering the geometry in Fig. 4 where a two-dimensional
L-shaped object is illuminated by a plane-wave. Let us assume that the original computational domain Xc; org is constructed
as the spatial region containing the convex-hull of the object. That is, the original computational domain (i.e.,
Xc;org ¼ XFS [XPML [ eXFS [ eXPML [XAMM, where the subscripts ‘FS’ and ‘PML’ are the abbreviations for ‘free-space’ and ‘per-
fectly matched layer’, respectively) is trapezoidal in shape in order to minimize the number of unknowns as much as pos-
sible. The computational domain may also have a rectangular shape to be able to employ certain numerical schemes based
on Cartesian grids. The initial phase of the procedure is the construction of the spatial region occupied by the AMM layer
(XAMM) in such a way that the excessive white space region is compressed suitably. The new computational domain now
Fig. 2. Computational domain for non-convex object: (a) conventional rectangular domain and (b) domain with respect to the convex hull.



Fig. 3. Illustration of domain compression via AMM layer.

Fig. 4. Design of the AMM layer with coordinate transformation.
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becomes Xc; new ¼ XFS [XPML [XAMM as shown in Fig. 4. In this configuration, there may be a small free-space gap between
the object and the boundary of the AMM layer ð@X0Þ.

To design the AMM layer, each point P inside the AMM layer is mapped to eP inside the transformed regioneX ¼ eXFS [ eXPML [XAMM. This mapping is defined as a coordinate transformation T : XAMM ! eX as follows:
e~r ¼ ~r2 �~r0k k
~r1 �~r0k k ð

~r �~r0Þ þ~r0 ð1Þ
where~r and e~r are the position vectors of the points P and eP in the original and transformed coordinate systems, respectively,
and k � k represents the Euclidean norm. Moreover,~r0; ~r1 and~r2 are the position vectors of P0; P1 and P2 which are deter-
mined on @X0, @X1 and @X2, respectively, through the unit vector âp. The coordinate transformation T : XAMM ! eX maps
the region XAMM into the convex region eX. In other words, the problem in Fig. 4 is solved as if the region eX is compressed
into the AMM layer XAMM in the direction of the unit vector âp. The direction of the unit vector âp can be chosen in various
ways (such as in the direction of parallel lines), and we will discuss the implementation issues in detail in Section 3.

As a result of the coordinate transformation in (1), the original medium turns into a spatially-varying anisotropic medium
ensuring that the original forms of Maxwell’s equations are still preserved in the transformed space. In other words, Max-
well’s equations are form-invariant under space transformations, and a general coordinate transformation leads to the fol-
lowing expressions for the permittivity and permeability tensors [15,16]
��e ¼ eK ð2aÞ
��l ¼ lK ð2bÞ
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where e and l are the constitutive parameters of the original isotropic medium (usually free-space in scattering problems),
and
K ¼ J�1
� �T

� J�1
� ��

det J�1
� �

ð3Þ
where J is the Jacobian tensor defined as (in Cartesian coordinates)
J ¼ @ð
~x; ~y;~zÞ

@ðx; y; zÞ ¼
@~x=@x @~x=@y @~x=@z
@~y=@x @~y=@y @~y=@z

@~z=@x @~z=@y @~z=@z

2
64

3
75: ð4Þ
Hence, the AMM layer can be designed using the constitutive parameters in (2), which are directly computed by using the
Jacobian of the transformation.

The coordinate transformation in (1) yields real-valued coordinates in the transformed space. However, if the transformed
point e~r falls into the PML region of the original domain (i.e., e~r 2 eXPML [X1 [X2 in Fig. 4), then the PML action should be in-
cluded in order to achieve an attenuation in the field quantities in the close vicinity of @X1. In other words, the PML region
should also be compressed into a region inside the AMM layer. This is necessary in order to avoid the artificial reflections
from the outer boundary @X1. Inclusion of the PML action can be handled via two alternative ways depending on the imple-
mentation of the PML. First, the PML can be realized as an anisotropic layer with suitably defined permittivity and perme-
ability tensors ð��ePML; ��lPMLÞ. If the constitutive parameters of the PML region in the original domain are calculated using a
suitable PML approach, then the constitutive parameters of the AMM layer whose transformed points are inside the PML
region should be determined as follows:
��e ¼ e J�1
� �T

� ��ePML � J�1
� ��

det J�1
� �

ð5aÞ

��l ¼ l J�1
� �T

� ��lPML � J�1
� ��

det J�1
� �

: ð5bÞ
Second, as an alternative and more convenient way, the PML action can be included using the locally-conformal PML
method [2], which utilizes a special type of complex coordinate stretching. The locally-conformal PML is designed in com-
plex space by just replacing the real coordinates with their complex counterparts (i.e., simply by adding suitable imaginary
parts to the real coordinates), which are calculated in terms of the complex coordinate transformation. Thus, the transformed
points ðe~r 2 R3Þ falling into the PML region are replaced by their complex counterparts calculated by the following complex
coordinate transformation
e~r ! e~rc ¼ e~r þ anm

jkm dm�1
PML

ân; ð6Þ
where e~rc 2 C3; n is the distance between e~r and~r0 (~r0 is the point on the PML–free-space interface which is closest to e~r), ân is
the unit vector along the direction of decay (i.e., in the direction e~r �~r0), k is the wavenumber, a is a positive parameter, m is a
positive integer, and dPML is the local PML thickness for the corresponding PML point. After the transformations in (1) and (6)
are performed sequentially, the constitutive parameters of the AMM layer should be similarly calculated using the expres-
sions in (2), (3), (4), for the point e~rc. It is useful to note that the constitutive parameters in this case become complex-valued
reflecting the effect of the PML action.

3. Implementation issues

While performing the coordinate transformation in (1), the selection of the unit vector âp (see Fig. 4) plays a vital role in
determining how the domain will be compressed, or clearly in which direction the domain will be squeezed into the spatial
region occupied by the AMM layer. There may be various ways to achieve this goal, but some rules of thumb should be kept
in mind to properly compress the domain. First, the coordinate transformation T : XAMM ! eX in (1) must be continuous such
that:
kTð~rÞ � Tð~r�Þk < e; whenever k~r �~r�k < d; ð7Þ
where e > 0 and d > 0 ðd depends on eÞ. The expression in (7) implies that two closely-located points~r and~r� in XAMM are

mapped to also closely-located points e~r and e~r� in eX. In other words, there should not be a considerable deviation in relative
positions for two closely-located points after the coordinate transformation. Otherwise, unreliable results may occur due to
two reasons: (i) spatial variations in the entries of the permittivity and permeability tensors corresponding to contiguous
points increase owing to the definition of the coordinate transformation, and (ii) qualities of elements in the mesh are dis-
torted to a great degree. This conclusion is critical in the simulation of the technique, as demonstrated in Section 4. In addi-
tion to this principal requirement, the unit vector âp should be chosen in such a way that the domain should be compressed
in a symmetrical way as much as possible, in conformity with the spatial symmetry of the computational domain. This may



Fig. 5. Implementation of coordinate transformation: (a) unit vector chosen in the direction of parallel lines and (b) unit vector chosen in the direction of a
center.
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be important in order to avoid non-uniform compression (i.e., non-uniform density of transformed points) inside the AMM
layer, and thus, to avoid large variances in the entries of the constitutive tensors.

Depending on the geometry of the problem, the unit vector âp can be chosen in the direction of parallel lines and/or in the
direction of lines intersecting at a given center point. For instance, for the L-shaped object shown in Fig. 5(a), the unit vector
âp can be directed along the parallel lines making an angle h which corresponds to the angle of the line passing through the
corners of the object. Then, the points P0; P1 and P2 are determined on their corresponding boundaries through âp. In
Fig. 5(a), in the whitened triangular sections of the AMM layer inside the PML region, the unit vector âp is directed with dif-
ferent angles as shown in the figure. In fact, in these small portions, the transformed coordinates are identical to the original
coordinates (i.e., e~r ¼~r and Jacobian tensor in (4) is unity) because P1 and P2 coincide exactly at the tip of the boundary.

As an alternative way, the direction of the unit vector âp can be chosen in the direction of lines intersecting at a pre-de-
fined center point, which is slightly outside the compressed domain. This approach is inspired by the multi-center PML
method introduced in [17]. For example, we now consider the L-shaped object in a rectangular computational domain (it
may also be trapezoidal) as shown in Fig 5(b). In this case, we may choose the center point ðPcÞ to be located close to the
upper right corner of the domain. Then, the unit vector âp denotes the direction of the vector from each point P inside
the AMM layer towards to the center Pc. These two alternative ways in the calculation of âp may both yield reliable results.
In general, we have observed that if the geometry of the AMM layer contains corners with wide angles (such as P 90�), then
the former approach considering parallel lines may be used easily to achieve the compression. On the other hand, in the case
of narrower angles, the second approach based on a center may be employed in a more convenient manner. In this case, the
center which is located in the close neighborhood of the mid-point (or the vertex, if any) of the boundary @X2 is a good can-
didate to achieve desirable results.

At first sight, it may be claimed that the AMM layer requires finer grid to better handle the spatial variations, because a
larger domain is compressed into a smaller domain. Here, we explain why we claim that the proposed approach reduces the
number of unknowns, and that the anisotropic material does not necessarily have to be denser. First, we emphasize that the
‘‘electrically-large” objects are of interest to us due to the large number of unknowns needed in such high-frequency prob-
lems. If the size of the object is large with respect to the wavelength, we can use the principles of the ray-optics to describe
the physics of the problem. Let us assume that the scatterer is an L-shaped object, and the incident plane wave illuminates
the object at an arbitrary angle, as shown in Fig. 6(a). This figure shows the 1st- and 2nd-order reflected rays from the lower
and upper faces, respectively, for the original problem. In Fig. 6(b), we show the equivalent problem where the domain is
compressed in the direction of âp unit vector, which is in the same direction of the incident field. The 1st- and 2nd-order
reflected rays after the coordinate transformation are shown by 10 and 20, respectively. Obviously, the length of the 1st
ray will always be longer than its original length ðl10 > l1Þ because of the compression, irrespective of the point where
the incident wave hits the object. Hence, the ray must travel faster in order to traverse over this longer path. Since the fre-
quency is fixed, the wavelength increases, and therefore, the spatial discretization (or element size) in the original problem is
sufficient, even provides better resolution, in the equivalent problem to handle field variations over this longer path. Now, let
us examine the 2nd-order reflected ray 20. It is evident that the length of the 20 ray gets shorter after the transformation, and
a finer discretization is required over this path due to shorter wavelength. Therefore, the only source of error will be the
rough discretization over 20 if the element size of the original problem is employed. However, since the effect (and the
strength) of the 2nd-order ray is obviously less than of the 1st-order ray, the error contribution remains in acceptable levels
(as demonstrated in numerical simulations). More importantly, it is possible to decrease the error by increasing the length of
the 20 ray. The worst case for which the length of the 20 ray is the shortest occurs if the direction of 20 is in the same direction
as the �âp unit vector (direction of compression), as shown in Fig. 6(b). If we change the direction of �âp unit vector as
shown in Fig. 6(c), then the length of the 2nd-order ray increases ðl200 > l20 Þ, and the error due to discretization decreases.
In principle, if there is wave propagation in the direction of compression, it introduces errors based on the compression rate
because of the decrease in the length of propagation. Otherwise, the discretization error will not occur. Hence, by adjusting



Fig. 6. Ray-optics interpretation of domain compression technique for electrically-large objects: (a) rays in original problem of L-shaped object, (b) rays in
AMM layer if the directions of compression and propagation are the same, (c) rays in AMM layer if the directions of compression and propagation are
different, (d) rays in original problem of wide-angle object, (e) rays in AMM layer of wide-angle object, (f) rays in original problem of narrow-angle object
and (g) rays in AMM layer of narrow-angle object.
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the direction of compression based on the physics of the problem at hand, we can achieve reliable results and decrease the
number of unknowns without using finer meshes. We note that since we compress the region between different parts of a
non-convex object, the waves propagating in the direction of compression will usually be the 2nd- or higher-order waves,
whose error contribution due to discretization will be small. For the purpose of illustration, we show the ray propagation
inside a wide-angle object in Fig. 6(d) and (e), and inside a narrow-angle object in Fig. 6(f) and (g). In Fig. 6(e), the only source
of error is the 2nd-order ray, however, we will never experience the worst-case where the compression direction is in the
direction of propagation due to the geometry and the direction of âp. Similarly, in Fig. 6(g), only the 3rd-order ray will cause
error because of the same principles. It is also worthwhile to mention that we do not consider the incident ray in Fig. 6(b), (c),
(e) and (g), because we use the scattered field formulation, where Escat

z ¼ �Einc
z is imposed on the boundary of the conducting

object. Clearly, we are interested in only the scattered fields. The above-mentioned comments are applicable to the diffracted
fields as well. The length of the 1st-order diffracted field originated from an edge always increases after the transformation,
implying that the discretization of the original problem is adequate for reliable results.

It is useful to emphasize that the computational effort to implement the coordinate transformation in a computer code
creates almost negligible burden on the processing power of the computer, compared to some other phases of the code
(such as usual matrix construction and solution phases), because the calculation of the constitutive parameters using the
Jacobian of the coordinate transformation in (4) can be carried out in the preprocessing phase (i.e., before the matrix con-
struction phase). The calculation of the Jacobian of the coordinate transformation can be performed analytically or numer-
ically depending on the geometry and on the nature of the finite method utilized in the solution. In the simulation of the
method in a finite element method (FEM) code, the Jacobian of the coordinate transformation can be calculated numerically
using a very simple and straightforward procedure, even in challenging geometries. We briefly discuss this procedure in Sec-
tion 3.1.

3.1. Numerical implementation in finite element method

In this section, we briefly present the numerical evaluation of the Jacobian of the coordinate transformation given in (4).
The initial step, which is performed in the preprocessing phase, is to compute the transformed coordinates for all nodes in-
side the AMM layer by using (1). In this equation, the position vectors that are located on their corresponding boundaries can
be found from the node coordinates in an existing FEM mesh by using some simple computational search techniques, assum-
ing that the nodes on the boundaries of the AMM layer (i.e., @X0; @X1Þ are preserved during the mesh generation phase. We
should also have information about the boundary @X2 either analytically or numerically.

After applying the coordinate transformation to all nodes inside the AMM layer, the Jacobian tensor in (4) is calculated
using the scalar FEM shape functions (i.e., basis functions) in each element of the AMM layer. Thus, this numerical calculation
can be incorporated into the matrix construction phase with little effort. We first assume that the computational domain is
discretized by tetrahedral elements in 3D. Then, in each element, we express the coordinate variable variations in terms of
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the scalar shape functions and the global node coordinates (in Cartesian coordinates) using the isoparametric mapping1 as
follows
1 In i
coordin
x ¼
X4

i¼1

xiNiðe;g; tÞ; y ¼
X4

i¼1

yiNi e;g; tð Þ; z ¼
X4

i¼1

ziNiðe;g; tÞ; ð8Þ
where ðxi; yi; ziÞ are the node coordinates in each tetrahedral element, and Niðe;g; tÞ is the scalar shape function for the ith
node in local coordinates and given by
N1 ¼ 1� e� g� t; N2 ¼ e; N3 ¼ g; N4 ¼ t: ð9Þ
Similarly, we express the variations in the transformed coordinates as follows:
~x ¼
X4

i¼1

~xiNiðe;g; tÞ; ~y ¼
X4

i¼1

~yiNiðe;g; tÞ; ~z ¼
X4

i¼1

~ziNiðe;g; tÞ ð10Þ
where ð~xi; ~yi;~ziÞ are the node coordinates after the coordinate transformation in (1). Then, using the chain rule, we derive the
following expressions for the components of the Jacobian tensor in (4) after some manipulations
@~x=@x

@~x=@y

@~x=@z

2
64

3
75 ¼ JFEM �

@~x=@e
@~x=@g
@~x=@t

2
64

3
75 ð11aÞ

@~y=@x

@~y=@y

@~y=@z

2
64

3
75 ¼ JFEM �

@~y=@e
@~y=@g
@~y=@t

2
64

3
75 ð11bÞ

@~z=@x

@~z=@y

@~z=@z

2
64

3
75 ¼ JFEM �

@~z=@e
@~z=@g
@~z=@t

2
64

3
75 ð11cÞ
where
JFEM ¼
@x=@e @y=@e @z=@e
@x=@g @y=@g @z=@g
@x=@t @y=@t @z=@t

2
64

3
75
�1

ð12Þ
All derivative terms appearing on the right-hand-side of the equations in (11) and (12), which are also the entries of the Jaco-
bian tensor in (4), can be calculated simply by using the expressions in (8)–(10), and depend directly on the nodal coordi-
nates. Next, the constitutive tensors in each element can be calculated using (2) and (3) with some simple matrix algebra. If
the PML action is to be included into the transformation, the transformed coordinates e~r in (11) and (10) are just replaced by
the complex coordinates e~rc calculated by (6). A similar approach is followed for 2D problems involving triangular elements.
In this case, we omit the z- and t-variation in global and local coordinates, respectively. We also set the number of nodes to
three instead of four in the summation terms in (8) and (10). We emphasize that the Jacobian, as well as the constitutive
parameters, are evaluated only in terms of the nodal coordinates. Hence, it is interesting that we can just replace the original
coordinates with the transformed coordinates to implement the domain compression without computing the material
parameters, and further decrease the computation time.
4. Finite element simulations

In this section, we present the results of a number of numerical experiments to validate the performance of the AMM
layer in 2D TMz electromagnetic scattering problems involving infinitely-long cylindrical PEC objects. All simulations are
performed by using our FEM software employing triangular elements. In all examples, the wavelength in free-space ðk0Þ
is set to 1 m. In addition, the computational domain is terminated with a PML absorber, which is implemented by the lo-
cally-conformal PML method [2]. Moreover, in all examples involving a single object, the free-space distance between the
object and the boundary of the AMM layer is set to 0.05k0. In other examples involving multiple objects, this distance is
shown clearly in their corresponding plots. The incident plane wave is assumed to be in the form of
~Einc ¼ âz exp½jkðx cosuinc þ y sin uincÞ�, where uinc is the angle of incidence with respect to the x-axis.

In each example in this section, we simulate two scenarios:
soparametric mapping, each element in global coordinates is mapped to a master element in local coordinates. In this mapping, both the global
ates and the unknown field are expressed in terms of the same shape functions.



Table 1
Error values and reduction in unknowns for L-shaped scatterer (L, edge length of the scatterer; dAMM, width of the AMM layer; Dh, element size in FEM).

L (m) dAMMðmÞ ERR (%) (trapezoidal domain) Nreduce (%)

Dh ¼ k0=20 Dh ¼ k0=40 Trapezoidal domain Square domain

2 0.25 0.0473 0.0279 35 52
0.2 0.0567 0.0462 37 54
0.15 0.0851 0.0639 40 57

4 0.5 0.0336 0.0332 44 61
0.3 0.0717 0.0666 51 68
0.2 0.1057 0.1015 55 71

8 0.5 0.0713 0.0306 62 77
0.4 0.0988 0.0942 65 80
0.3 0.1700 0.1310 68 82
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(i) simulation of the original problem, and
(ii) simulation of the equivalent problem compressed with AMM layer.

We expect that these simulations must yield identical field values inside the free-space region of scenario (ii) as shown in
Fig. 4 (excluding the compressed domain in scenario (i)). Therefore, in order to measure the performance of the proposed
method, we introduce a mean-square error criterion as follows
2 For
ERR ¼
P

XFS
~EðiiÞ �~EðiÞ
��� ���2P
XFS

~EðiÞ
��� ���2 ð%Þ ð13Þ
where~EðiÞ and~EðiiÞ are the electric fields calculated in the scenarios (i) and (ii), respectively, and XFS is the above-mentioned
free-space region in scenario (ii). It may be useful to mention that we perform scenario (i) only for the sake of comparison,
and scenario (ii) does not require any information about the full-mesh of the original domain in scenario (i), but just need a
priori knowledge about the geometry of the outer boundary @X2 and the PML boundary (viz., dotted boundaries in Fig. 4). The
performance of the compression technique is also tested in terms of the radar cross section (RCS) calculations.

Apart from these performance evaluations, we measure the value of the reduction in the number of unknowns by using
the following expression
Nreduce ¼
NðiÞ � NðiiÞ

NðiÞ
ð%Þ ð14Þ
where NðiÞ and NðiiÞ are the number of unknowns employed in the scenarios (i) and (ii), respectively.
In the first example, we consider a scattering problem, where a plane wave ðuinc ¼ 45�Þ is incident to an infinitely-long

PEC cylinder having a ‘thin’ L-shaped cross-section whose thickness is k0=20. The element size is set to k0=20 for the original
problem. We implement the coordinate transformation in scenario (ii) by using unit vectors directed along parallel lines with
angle 45� (refer to the discussion in Section 3), which is indeed the worst case mentioned in Fig. 6(b). In Table 1, we tabulate
the ERR values by varying the edge length of the object (L), the thickness of the AMM layer (dAMM), and the element size (Dh)
used in FEM, assuming that the computational domain is designed by considering the convex hull of the object (i.e., trape-
zoidal). We also tabulate the Nreduce values corresponding to the trapezoidal domain, as well as to the square domain. The
results in this table reveal that the proposed method is reliable for arbitrarily-sized objects using electrically-thin AMM lay-
ers and using elements having moderate sizes. We observe that the results can obviously be improved by increasing the
thickness of the layer, rather than decreasing the element size (refer to the discussion in Section 3). Due to the nature of
the geometry, the method provides a considerable reduction in the number of unknowns, especially in high frequencies.
To visualize the wave behavior in the computational domain, we consider an L-shaped object with edge length 8 m, and de-
sign an AMM layer whose thickness is 1 m. We plot the contours of the magnitude of the scattered electric field in Fig. 7(a)
and (b) for the scenarios (i) and (ii), respectively. We also plot the bistatic RCS profiles in Fig. 7(c).

By referring to Fig. 6 described in Section 3, we plot the ERR values in Fig. 8 as a function of the direction of compression
corresponding to an L-shaped object, whose edge length is 10 m, illuminated by an incident plane with uinc ¼ 45�. We note
that the same mesh discretization k0=20 is employed uniformly for both original and equivalent problems. The black and red
curves2 correspond to the simulations where dAMM ¼ 0:7 m and dAMM ¼ 1 m, respectively. In the black curve, the maximum
error occurs if the compression is performed in the same direction of propagation (i.e., 45�). However, when we change the
compression direction, the error decreases because the length of the 2nd-order reflected ray (20 in Fig. 6(c)) becomes longer.
interpretation of the references of color in this figure, the reader is referred to the web version of this article.



Fig. 7. Finite element simulation for L-shaped object: (a) electric field contour in original problem [scenario (i)], (b) electric field contour in equivalent
problem with AMM layer [scenario (ii)] and (c) bistatic RCS profile.
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Fig. 8. Error values as a function of compression direction for L-shaped object.
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For higher angles, the results start to deteriorate because of the increase in the elemental distortion caused by non-uniform
compression. When we slightly change the thickness of the AMM layer ðdAMM ¼ 1 mÞ, we observe that the error – shown by
the red curve – considerably decreases even in the worst case, meaning that this thickness of the layer can easily handle the
Fig. 9. Finite element simulation for F-shaped object: (a) electric field contour in original problem [scenario (i)], (b) electric field contour in equivalent
problem with two AMM layers [scenario (ii)] and (c) bistatic RCS profile.



Fig. 10. Finite element simulation for multiple objects (a circular object in front of a rectangular object): (a) electric field contour in original problem
[scenario (i)], (b) electric field contour in equivalent problem with two AMM layers [scenario (ii)] and (c) bistatic RCS profile.

Table 2
Computation time and number of unknowns in numerical experiments.

Description Computation time (s) Number of unknowns

Scenario (i) Scenario (ii) Scenario (i) Scenario (ii)

L-shaped (8 m) 215.6 41.9 20,534 7843
F-shaped 110.7 69.7 14,784 8850
Two objects 77.6 47.7 11,814 7837
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field variations without using finer grid. Therefore, we conclude that the results are in conformity with the discussions in Sec-
tion 3, and the errors are in acceptable levels. Finally, as instrumental information, the reduction in unknowns is 60% if
dAMM ¼ 0:7 m, and 55% if dAMM ¼ 1 m.

In the second example, we perform the domain compression for a thin F-shaped object illuminated by a plane wave with
uinc ¼ 0�. We plot the scattered field contours and the bistatic RCS profiles in Fig. 9. In scenario (ii), we design two AMM lay-
ers whose widths are set to 0.5 m. The first AMM layer is designed inside the inlet-like structure (upper part) using unit vec-
tors directed along the center ðPcÞ shown by the black dot in Fig. 9(b). The second AMM layer is designed for the leg of the
geometry (lower part) using unit vectors directed along parallel lines passing through the diagonal. The value of ERR is cal-
culated as 0.5439%, and the reduction in unknowns as 40%.

The last example considers a scattering problem involving multiple objects. A plane wave ðuinc ¼ 45�Þ illuminates a rect-
angular (0.5 m � 4 m) object and a circular object whose diameter is 1 m. We plot the scattered field contours and the bistat-
ic RCS profiles in Fig. 10. As shown in Fig. 10(b), we design two AMM layers whose widths are set to 0.3 m using the centers
ðPcÞ shown by the black dots. We compute the ERR as 0.5448%, and the reduction in unknowns as 34%.

Finally, in order to manifest the decrease in the overall computation time, we tabulate the periods of time elapsed to pro-
cess the examples in this section, as well as their number of unknowns, in Table 2. The simulations have been performed in
an ordinary PC (Pentium 4 with 1 GB RAM) using MATLAB�.
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The numerical experiments in this section demonstrate that the performance of the AMM layer in domain compression is
in conformity with the theory, in various configurations.

5. Conclusions

In this paper, we have introduced a new technique employing anisotropic metamaterials for the purpose of domain com-
pression in electromagnetic problems. The anisotropic metamaterial layer is implemented by a suitably-defined coordinate
transformation. We have concluded that the proposed method provides a reduction in the number of unknowns, as well as in
memory and computation time, which become more pronounced especially in high-frequency applications. We have numer-
ically explored the functionality of the method in various configurations with the aid of finite element simulations, and have
validated the theoretical predictions.
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